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Abstract: Land cover (LC) is a crucial parameter for studying environmental phenomena. Cutting-edge
technology such as remote sensing (RS) and cloud computing have made LC change mapping efficient.
In this study, the LC of Rupandehi District of Nepal were mapped using Landsat imagery and Random
Forest (RF) classifier from 2005 to 2020 using Google Earth Engine (GEE) platform. GEE eases the way
in extracting, analyzing, and performing different operations for the earth’s observed data. Land cover
classification, Centre of gravity (CoG), and their trajectories for all LC classes: agriculture, built-up,
water, forest, and barren area were extracted with five-year intervals, along with their Ecosystem service
values (ESV) to understand the load on the ecosystem. We also discussed the aspects and problems of
the spatiotemporal analysis of developing regions. It was observed that the built-up areas had been
increasing over the years and more centered in between the two major cities. Other agriculture, water,
and forest classes had been subjected to fluctuations with barren land in the decreasing trend. This
alteration in the area of the LC classes also resulted in varying ESVs for individual land cover and
total values for the years. The accuracy for the RF classifier was under substantial agreement for such
fragmented LCs. Using LC, CoG, and ESV, the paper discusses the need for spatiotemporal analysis
studies in Nepal to overcome the current limitations and later expansion to other regions. Studies such
as these help in implementing proper plans and strategies by district administration offices and local
governmental bodies to stop the exploitation of resources.

Keywords: remote sensing; Landsat; land cover; random forest; center of gravity; ecosystem service
values; Rupandehi

1. Introduction

Land cover (LC) is an important parameter to study and track the local, regional, and
global changes of the earth’s surface. It has been a crucial variable for different studies
such as climate change, food security, environmental studies, conservational strategies,
hydrology, and landscape planning [1–4]. LC, being subjected to natural phenomena and
anthropogenic causes of land use, is very dynamic [2,3]. The changes in the constitution of
LC represent one of the most significant sources of system changes at local, provincial, and
worldwide scales [5]. To accomplish the United Nations’ Sustainable Development Goals
(SDGs), timely and higher resolution LC data are critical [6].

The long-term earth observation data record is a tool for analyzing the land use and
land cover changes (LCC) [7]. Remote Sensing has been a useful aid in studying the patterns
of LC with a decreased cost and less effort [2]. The easily accessible and freely available
satellite imageries have assisted in studying the LC patterns at a regional and global scale,
which would have been difficult, if not impossible. Various global LC data have been
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produced over the years, such as GLC2000 [8], MCD12, and GLCNMO, GlobCover [9],
IGBP DISCover [10], MODIS Collection 5 global land cover [11], Global Land Surface
Satellite Global Land Cover (GLASS-GLC) [12], GLC30 [13], GLC10 [6], ESA CCI Land
Cover time-series [8], ESRI 10 m [14], etc. While some researchers are concentrated on
a local or regional level to map out specific phenomena, for example, meteorology [15],
future prediction [16,17], urban heat islands [18], climate change [19], water [20], forest [21]
and biodiversity [22], and agricultural monitoring [23], current studies are also focused on
improvements such as finer resolution and classification procedures [1,24–26].

Image Classification is the basis of LC, in which we assign LC classes to a multiband
raster image. Image Classification in remote sensing is broadly categorized into the follow-
ing three types: pixel-wise classification, sub-pixel-wise classification, and object-based
image classification. Pixel-wise classification treats each pixel as pure and is labeled as
a single land use-LC type based on the spectral signature and their derivatives such as
vegetation indices [27], which are further divided into an unsupervised and supervised
classification. Unsupervised classification, which is based on the principle of creating
clusters and assigning classes, has been used in various studies [24,25,28–30]. Conversely,
supervised classification is based on taking samples as training data and applying them to
classify [31]. While the sub-pixel classification works to address the mixed pixel problem
for coarse resolution satellite images, by treating the pixel as mixed and considering the
areal proportion of each class [26,32], object-based image analysis is centered on generating
image objects through image segmentation and performing the image classification on
objects with different geometries rather than pixels [33–35].

It has been evident from the review that different types of satellite images and classifi-
cation algorithms have been used and the choice is undoubtedly influenced by research
objective and questions to be addressed by the work. Stephens and Diesing [36] tested
the following six supervised classifiers: Classification Trees, Support Vector Machines,
k-Nearest Neighbor, Neural Networks, Random Forest (RF), and Naive Bayes, and found
good accuracy for tree-based methods and Naive Bayes. RF is a set of tree predictors;
therefore, each tree depends on the value of an independently sampled random vector,
and all the trees in the forest have the same distribution [37]. RF also performed well for
the LC classification of a multi-source remote sensing and geographic data set in a study
conducted by Gislason et al. [38]. Eisavi et al. [39] considered different scenarios for the LC
mapping using RF, with the inclusion of land surface temperature data along with spectral
data, and found the approach worked best for selected features over using just spectral
signatures. Therefore, RF was used as a classification method for our work as well, in
which we used spectral signatures along with derived indices and topography data: slope
and elevation as input parameters.

Google Earth Engine (GEE), which is a cloud computing platform, has eased in
extracting, analyzing, and performing different operations for the earth’s observed data.
It has been employed in different regions of the world to monitor the vegetation, water
resources, and tracking the changes in land cover. As GEE is technologically robust and is
an open resource containing historical images, it has become increasingly popular in LULC
mapping. In the Asian region as well, it has been adopted in the countries such as India [40],
Bangladesh [41], Singapore [42], China [43–45], Cambodia [46], Nepal [47], etc. GEE has
also been applied in understanding the changes in land cover at the regional level such as
in Central Asia [48] and the Tigris-Euphrates basin of the Middle East [49]. Automation
in land cover mapping has also been possible due to the cloud computing feature of GEE.
Xie et al. [50] proposed an automatic land cover classification method using time-series
Landsat data using an International Geosphere-Biosphere Program (IGBP) classification
scheme (Automatic Land-Cover Mapping).

In addition to understanding the present status of LC, it is equally important to track
the motion of the center of change of the specific LC over the years. In the last years, with
the growing urbanization, there have been significant changes in the types of regional land
use. Therefore, the analysis of the central displacement of LC can help understand the
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development of the region and provide references for resource management and territorial
planning [51]. For this purpose, a shift of the center of gravity (CoG) of the particular LC
class has been studied [51–53]. The CoG models also help to explain regional shifts along
the development axes [53].

Ecosystem services provide the basis for human life that are directly and indirectly
contributing to human well-being and sustenance. The services range from filtering air and
water by plants to decomposing wastes by microbes. These ecosystem services have been
broadly grouped into the following four categories: provisioning, regulating, supporting,
and cultural. With rapid development, Chinese researchers have been also using Ecosystem
Service Value (ESV), an approach to assign monetary values to an ecosystem and its key
ecosystem goods and services. Since Costanza et al. [54] published their article on the
global value of ecosystem services, it has increasingly become more common and has been
adapted in different areas modifying the coefficients of ESV [55–58]. A total of 17 types
of ecosystem services were integrated into the original article by Costanza et al. [54],
including climate regulation, water regulation, nutrient cycling, genetic resources, and
culture. Moreover, the land is also classified into ecological land and non-ecological land,
divided based on the positive or negative impacts on the ecosystem. Ecological land is
the land type providing basic ecosystem services, includes non-built-up areas such as
agriculture, water bodies, forest, grassland, and thus, has a high ESV. In contrast, non-
ecological land is an imperious, built-up area, thus weakening the ecosystem services [59].
With the population and urbanization pressure, the richest and diversified ecosystems are
under a great threat. For instance, it was reported in 2018 that wetlands are declining three
times faster than forests [60]. Thus, a study of ESV could help concerned stakeholders in
understanding the rapid trend of urbanization, its severe environmental effects, and the
load on the ecosystem.

Rupandehi, bordering its entire southern boundary with India, is a major corridor
for the economic trade between Nepal and India. Being an economic hub, the district is
facing the problem of managing urban growth. Home to happening towns, the district has
undergone some remarkable changes and it has become extremely crucial to monitor the
changes it has experienced or will experience in the future. While there have been some
studies on the LC, they are generally at a national level [3,61]. The district is composed
of a large percentage of agricultural land, followed by forest cover. Due to the result of
unmanaged urbanization, the area has been severely affected by land fragmentation. This
has resulted in improper drainage and flooding. Our study aims to provide LC and the
pattern of a centroidal shift of the LC, which can help in curbing the effects, and present
plans for tackling such situations. As the changes in the past and present conditions of
the district are not known, it becomes extremely crucial to monitor the changes, as it can
face severe drought and other climate crises in the future. Therefore, a detailed study
on the spatiotemporal analysis of the LC is a must for a rapidly growing urban region
such as Rupandehi.

The study focuses on classifying the LC of the Rupandehi District into five broad
classes (agriculture, built-up, water bodies, forest, and barren) based on spectral informa-
tion from Landsat Sensor using the RF algorithm. The major objectives are (1) to explore
the spatiotemporal change of the Rupandehi District from 2005–2020, (2) to analyze the
CoG trajectory of the land cover classes, (3) to calculate and analyze the ESV of individ-
ual LC classes and the whole district, and (4) to discuss the aspects and problems of the
spatiotemporal analysis of developing regions. To the best of our knowledge, this is the
first study that utilizes GEE, CoG, and ESV to understand the spatiotemporal analysis in
the study area. Additionally, the workflow can be adopted in other places to quantity land
changes and econometrics.
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2. Materials and Method
2.1. Study Area

Nepal, being one of the ten least urbanized countries in the world, is also one of the
top ten fastest urbanizing countries [62]. Due to the concentration of educational and
health facilities, and growing employment opportunities in Terai and major cities of valleys,
there has been an upward trend of people migrating [63]. The Maoist Insurgency and
the Madhesh Movement also had a significant impact on urbanization development [64].
This has led to uncontrolled population growth in the plains and valleys, resulting in
unmanaged urbanization. Terai, being home to a large percentage of agricultural and
forested land, is possessed by a great threat of haphazard development. Figure 1 shows the
status of an urban area and population percentage in three different geographical regions
(Himalayan, Hilly, and Terai). Without proper plans, the current trend would result in a
sharp decline of arable land and deterioration of forests.

Figure 1. Area of urban center in different geographical regions of Nepal [65].

Figure 2 shows the study area, which is the Rupandehi District located in the Lumbini
Province of Nepal. It is the third most populated district of Nepal. It covers an area of
1360 km2. Almost 60.2% of the area of the Rupandehi District is covered by agricultural land.
The district lies in the southwestern part of Nepal. It shares a border with Nawalparasi
District in the east, Kapilvastu District in the west, Palpa District in the north, and India in
the south. The elevation of the district is between 100 and 1229 m from sea level. Of the
area of Rupandehi District, 16.1% is in Churia Range and the rest is in the Terai region. It
has major rivers such as Tinau and Rohini that are the source of water for its people. Most
of the area of the Rupandehi District has a lower tropical climate (89.3%). It has two of the
major economic hubs of Nepal: Bhairahawa and Butwal. Not only economically, but the
Rupandehi District is also historically and culturally important. For the past many years,
Rupandehi District has faced rapid LCC due to the migration of people from hilly to terai
regions in search of flat cultivable land. It is very important to study the LCC pattern of
the Rupandehi District.

The spatiotemporal analysis of LCCs for the chosen study area, i.e., Rupandehi District
is still not quantified. Using Landsat Imagery in the GEE platform, LCs were derived for
different years. Figure 3 shows the workflow of this study. Annual cloud-free composites
were obtained for the Landsat imageries for the years 2005, 2010, 2015, and 2020. Initially,
unsupervised classification (clustering) was conducted to randomly create reference points
that help in capturing the variability in pixels. In addition to the surface reflectance
of the bands, different indices were also derived and used as input parameters for the
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RF. Topographic information such as elevation and slope derived from shuttle radar
topography mission (SRTM) digital elevation model (DEM) was also given as input, as they
also helped in accurately classifying imageries by obviating the effect of shadows from hills
and buildings. To ensure the points have been assigned the right classes, it was overlayed
with very high-resolution imagery from Google Earth Pro (GEP) and cross-checked with
expert knowledge. The total points obtained were randomly divided into two sets of
testing and validation. The classified maps were, then, assessed based on the validation set
by generating a confusion matrix. Based on obtained LC areas, shifts in the CoG and ESV
and spatiotemporal changes were analyzed.

Figure 2. Location map of the study area: Rupandehi District, Nepal with ESRI’s base map.

Figure 3. Workflow adopted in this study.
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2.2. Land Cover Classification
2.2.1. Satellite Data

All the datasets used in this study are available in the Google Earth Engine (GEE)
repository. The primary dataset used was the atmospherically corrected, tier 1 surface
reflectance Landsat imagery. Landsat 5 was used for the years 2005 and 2010 while Landsat
8 was used for the years 2015 and 2020. Figure 4 shows the multispectral bands of Landsat
5 and 8 data. Operating at a spatial resolution of 30 m, both have a temporal resolution of
16 days. Revolving around in sun-synchronous, near-polar orbit, both data were acquired
on the Worldwide Reference System-2 (WRS-2) path/row system.

Figure 4. Comparison of Landsat 5 and 8 bands and their wavelengths [66,67].

To acquire smooth continuous coverage of the scene without clouds, we used cloud
masking and median filtering functions for the image in GEE, resulting in the annual
median composite. In addition to spectral reflectance, different spectral indices (SIs)
were derived and added as the input parameters for training. SIs have been used in
vegetation studies, especially to assess the health of vegetation, which could provide
valuable information in classification approaches. The following were the indices used for
our study:

a. Normalized Difference Vegetation Index (NDVI): An indicator of vegetation green-
ness, NDVI is the ratio of the spectral reflectance difference between the near-infrared
(NIR) and red bands to the sum of the reflectances of the Near Infrared (NIR) and
red bands [68]:

NDVI = (NIR − Red)/(NIR + RED), (1)

b. Modified Normalized Difference Water Index (MNDWI): A modified version of
the Normalized Difference Water Index, MNDWI enhances the recognition of open
water bodies, by removing various noises of built-up areas, soil, and vegetation.
It is obtained as the ratio of spectral reflectance difference between the Green and
Short-Wave Infrared (SWIR) bands to the sum of the reflectances of the Green and
SWIR bands [69]:

MNDWI = (Green − SWIR1)/(Green + SWIR1), (2)
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c. Normalized Difference Built-up Index (NDBI): NDBI is the spectral index to detect
built-up areas. It is calculated as normalized difference between Short Wave Infrared
(SWIR) and green bands:

NDBI = (SWIR1 − NIR)/(SWIR1 + NIR), (3)

Topographic information such as slope and elevation were also used in classification.
They were derived from the SRTM, which is an international research effort in 2000 to
obtain a DEM on a near-global scale. The data in GEE are SRTM V3 product (SRTM Plus)
that is provided by NASA JPL at a resolution of 1 arc-second (approximately 30 m) and has
undergone a void-filling process using open-source data (ASTER GDEM2, GMTED2010,
and NED), as opposed to other versions that contain voids or have been void-filled with
commercial sources.

GEE has the Landsat data dating back from its launch to the present day. GEE eases the
way in extracting, analyzing, and performing different operations for the earth observed
data. Additionally, GEP hosts the historical high-resolution data making it possible to test
beforehand for each of the generated reference data for different years.

2.2.2. Reference Data

For generating reference data, unsupervised classification was used as an initial step.
Generating a large amount of training data can be tedious. Therefore, unsupervised
classification can help understand the distribution of samples and the clustering of similar
features. It was applied by Wagle et al. [70] to generate their training data. Thus, we
adopted ISO clustering to obtain 100 classes and applied stratified random sampling to
generate 800 points. Each point was cross-checked by layering over the high-resolution
imagery from GEP of the same year. To have improved representation and accuracy,
additional knowledge from the author’s prior knowledge of the study area (hometowns)
was applied for the modification, addition, and deletion of points. Based on the ability of
clusters and our ability to identify the LC, we generated the following 5 classes: agriculture,
built-up, water bodies, forest, and barren (Table 1). These were the most dominant types of
LC in the district. Due to the moderate resolution of Landsat, it was not advisable to further
subdivide the classes, as it would have been difficult and would result in misclassification.

Table 1. Description of land cover classes used in the study.

Class
Number

Class
Name Description

0 Agriculture Farmlands and cultivable lands, including seasonal croplands.
1 Built-up Residential, commercial, industrial, roads, suburbs, and construction sites.
2 Water All types of water bodies such as rivers, ponds, and lakes.
3 Forest Land dominated by trees, including natural woodlands and community plantations.
4 Barren Areas of silt and sand with very little or no vegetation, such as shores of rivers.

For the images of 2010 (Landsat 5), a total of 806 reference points for all LC classes
were cumulated, while for the images of 2015 (Landsat 8), the number of reference points
was expanded to 819. Of the total points, 70% were randomly selected for training and the
remaining 30% for validation.

2.2.3. Classification and Accuracy Assessment

Random Forest (RF) is a non-parametric ensemble learning algorithm combining
many decision trees, each working independently of the other. It is an improvement on
traditional decision trees, and it has been shown to yield better results in numerous case
studies. Figure 5 shows the representation of an RF, with decision trees that consist of
decision nodes, leaf nodes, and a root node. Each specific decision tree produces the
individual output, which is the leaf node of the tree. The final output is chosen using a
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majority-voting procedure. In this situation, the final output of the system is the output
chosen by the majority voting of decision trees.

Figure 5. Representation of the random forest classification along with decision trees.

Decision trees are useful in sorting observations into categories based on features.
They aid in differentiating between members of various groups and determining the degree
of resemblance among members of the same group. The RF generates a class prediction for
each tree, and the class with the highest votes becomes the model’s prediction. RF chooses
samples at random with a replacement, resulting in various trees. RF separates a random
selection of features, resulting in more variation, as opposed to traditional decision trees,
which analyze all potential features and choose the one that creates more variation. RF
produces a robust result.

For accuracy assessment, producer’s accuracy (PA), user’s accuracy (UA), overall
accuracy (OA), and Kappa statistics (Kappa) were calculated using the 30% validation
data via confusion matrix. These statistics were used to evaluate as well as compare the
classification results.

2.3. Centre of Gravity

The CoG is the point where the mass of the body seems to be concentrated. In the case
of landcover type, it determines the spatial concentration of the landcover. Additionally,
the CoG transfer trajectory determines the pattern of landcover change over time and helps
in the study of LCC analysis. The concept of an LC CoG is derived from the idea of the
population centroid and the economic centroid in geography.

CoG can be calculated as follows:

Xt =
∑n

i=1(Ati × Xi)

∑n
i=1 Xi

, (4)

Yt =
∑n

i=1(Ati × Yi)

∑n
i=1 Xi

, (5)

where Xt and Yt are the X and Y coordinates of the CoG of the particular LC in year t,
Xi and Yi are the X and Y coordinates of the geometric center of the ith patch, and Ati
represents the area of the ith patch.
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2.4. Economic Value of Ecosystem Services

Due to the topographical and development stage similarities between China and
Nepal, researchers have used a similar coefficient in Nepal for calculating the ESV values in
major river basins of Nepal such as the Koshi river basin [71], Gandaki river basin [72], and
Karnali river basin [73]. The studies had used the coefficients developed by Xie et al. [74],
which had the value zero for built-up areas. Our study also used the same value for
agriculture, water bodies, forest, and barren, but used the negative value of built-up areas
developed by Duan et al. [75] to address the negative impacts due to growing urban areas,
which was also used by Li et al. [59] in their study. The values used are shown in Table 2.

Table 2. The economic value of ecosystem services (in thousands of USD) for different classes covers.

Value Coefficient of
Ecosystem Services

(USD/Hectare)

Agriculture 1 Built-Up 2 Water Bodies 1 Forest 1 Barren 1

699.37 −828.85 6552.97 2168.84 59.83
1 Values were obtained from Xie et al. [74]. 2 Values were obtained from Duan et al. [75].

The general formula for the value of ESV is as follows [76]:

ESV = ∑Ai ×Pi, (6)

where ESV is the total ecosystem value (in USD), Ai is the area of land use type i (in
hectares), and Pi represents the value coefficient for the ecosystem services provided by
land type i (in USD/hectare).

3. Results
3.1. Land Cover Classification and Accuracy Assessment

The LC maps of the Rupandehi District between the years 2005 and 2020 are shown in
Figure 6. The district has seen some great variations and undergone some drastic changes.
It can be seen that agricultural lands and forests are among the most abundant classes.

An accuracy assessment was carried out on the resulting classified imagery using the
PA, UA, OA, and Kappa from the confusion matrix to test the precision and accuracy of the
classified imagery. As the Kappa values greater than 60% are considered as of substantial
agreement, it was 62, 66, 68, and 69% for the years 2005, 2010, 2015, and 2020, respectively,
showing the good agreement between the classified results and ground truth values in
such fragmented LCs. The OA assesses the percentage of data correctly classified. It was
found to be the highest (0.80) for 2020 and lowest (0.77) for 2005. For the years 2010 and
2015, it had the same value (0.79). Table 3 shows the accuracy assessment statistics obtained
for different years.

Table 3. Results of accuracy assessment for different land cover types and year.

Year 2005 2010 2015 2020

Overall Accuracy 0.77 0.79 0.79 0.8
Kappa coefficient 0.62 0.66 0.68 0.69

Accuracy (Producer’s and User’s) PA UA PA UA PA UA PA UA
Agriculture 0.87 0.81 0.96 0.74 0.88 0.78 0.93 0.81

Built-up 0.85 0.73 0.65 0.91 0.69 0.76 0.85 0.74
Water 0.75 0.67 0.75 0.75 0.73 0.69 0.27 0.67
Forest 0.65 0.76 0.76 0.87 0.86 1 0.73 0.95
Barren 0 0 0 0 0 0 0 0
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Figure 6. Results of land cover (LC) mapping for different years via GEE: (a) 2005; (b) 2010; (c) 2015;
and (d) 2020.

To check the correctness of the classification for individual class cover, the PA and UA
obtained from the confusion matrix were also calculated. The PA for agriculture remained
significantly higher than the other classes for all the years, the lowest being 0.87 for 2005.
The UA for agriculture also remained high in comparison to the other classes. It was
0.81 for both 2005 and 2020. The UA and PA for built-up areas were not consistent. It was
0.91 for the year 2010, while for all the other years, it ranged from 0.73 (2005), 0.74 (2020) to
0.76 (2015). The PA was also inconsistent for built-up areas. A significant difference in the
performance of the classifier can also be seen in the water class. While the UA remained in
the same range, the PA was the lowest (0.27) for the year 2020, but it was 0.75 for 2005 and
2010, and 0.73 for 2015. The forest class was classified accurately to a good extent. The UA
for the classification of forest for 2005 was the highest (1) amongst all, and for the other
years, it was 0.76 (2005), 0.87 (2010), and 0.95 (2020). The PA for the forest was moderately
accurate, 0.86 being the largest value for 2015. The UA and PA for barren land were zero
for all the years. This is due to the class imbalance problem. The barren land area is very
small in area compared to the other classes, resulting in fewer data for training and testing.

Table 4 shows all the areas of the derived LC maps for the Rupandehi District. While
constituting an area of 1003.29 sq. km. (76.9% of the total land) in 2005, the agricultural
land has declined to 946.6 sq. km. (72.5%). As compared to other thematic classes, the
built-up area has been increasing for each study year. Confined within 18.14 sq. km. in
the year 2005, it has increased to an area of 71.15 sq. km., covering 5.45% of the total
land area in 2020. The area covered by barren land has been declining as well. Initially,
at 2.39 sq. km. for the year 2005, the barren land area was even raised to 2.58 sq. km. in
2015 but has declined since then, standing at 0.65 sq. km. for the year afterward. The area
covered by water bodies has greater variations. Covering just 27.26 sq. km. in 2005, it
was continuously decreasing for the years 2010 and 2015. However, in 2020, it increased
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to 23.79 sq. km. Forest cover has been a consistent class. Although the percentage cover
has seen fluctuations, there is no drastic change in the cover. The minimum was in 2015
(242.81 sq. km.) and the maximum was in 2010 (266.54 sq. km.).

Table 4. Area (in sq. km.) of the different land cover classes for different years.

Year Agriculture Built-Up Water
Bodies Forest Barren

2005 1003.29 18.14 27.26 254.41 2.39
2010 988.47 27.99 19.00 266.54 2.58
2015 1005.76 41.85 14.38 242.81 0.65
2020 946.6 71.15 23.79 263.31 0.65

3.2. Analysis of Centre of Gravity

After the preparation of LC maps of different years from 2005 to 2020, we calculated
the centroid for each class and mapped the trajectory. The trajectory of the center is the
centroid, and their lengths are shown in Figure 7 and Table 5.

Figure 7. Centre of gravity and their shifts for all LCs in Rupandehi District with five years intervals. Note the space of
shifts is different.
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Table 5. Centre of gravity shift in meters for Rupandehi District, Nepal.

Land Cover From To Centre of Gravity
Shift (m)

Agriculture

2005 2010 147.794

2010 2015 287.042

2015 2020 246.485

Built-up

2005 2010 2175.226

2010 2015 230.236

2015 2020 2162.180

Water

2005 2010 2717.132

2010 2015 1970.585

2015 2020 2510.068

Forest

2005 2010 497.240

2010 2015 276.783

2015 2020 791.637

Barren

2005 2010 4921.259

2010 2015 5853.813

2015 2020 6483.858

Looking at the CoG transfer trajectory of agriculture, we can see that there has not
been much change in the spatial pattern of the agricultural land compared to other classes
over the past two decades. However, the centroid of agriculture has shifted toward the
west, indicating that there was a great migration of people to the western part that started
agricultural practices through various means. The transfer trajectory of barren is larger
than other classes. There is a zigzag pattern in the trajectory change. From 2005 to 2010, the
centroid shifted 4.92 km in the southeast direction. From 2010 to 2015, the centroid shifted
around 5.85 km in the southwest direction. Similarly, from 2015 to 2020, the centroid shift
was 6.48 km in the southeast direction.

From the CoG transfer trajectory of the built-up area (Figure 7) we can see that there
was a huge change in the location from 2005 to 2010 of 2.16 km in a northwest direction,
but not much change from 2010 to 2015. Again, from 2015 to 2020, there was a drastic
change in the trajectory of 2.16 km towards the south. Overall, the centroid shifted toward
the southwest, indicating there was an increase in settlements in the Bhairahawa and
western side of the Rupandehi District. There was not much change in the CoG transfer
trajectory of Forest. There was a shift of 0.28 km in an eastern direction from 2010 to 2015
and 0.79 km towards the southwest for 2015–2020. The CoG of the water body migrated
2.71 km southwest for 2005–2010, 1.97 km north for 2010–2015, and 2.51 km southwest from
2015–2020. The shift in the centroid in a water body was caused by establishing different
artificial ponds for fish farming in the southwestern area. The southwestern part of the
Rupandehi District has huge potential for fish farming.

3.3. Ecosystem Value Services Analysis of Land Cover

Based on the value of ecosystem services, modified by Xie et al. [63] and Duan et al. [64]
(Table 2), our study used and estimated the ESV between 2005, 2010, 2015, and 2020 in the
Rupandehi District, as shown in Table 6.
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Table 6. The economic value of ecosystem services (in thousands of USD) for Rupandehi
District, Nepal.

Year Agriculture Built-Up Water
Bodies Forest Barren Total

(Thousands of USD)

2005 701.67 −15.04 178.63 551.77 0.143 1417.18
2010 691.31 −23.20 124.51 578.08 0.154 1370.85
2015 703.40 −34.69 94.23 526.62 0.039 1289.6
2020 662.02 −58.97 155.89 571.08 0.039 1330.06

Among the values of different LULC types, the values of the ecosystem services
for agriculture were the highest. It had a value of 701.67 thousand USD in 2005 but fell
to 691.31 thousand in 2010, had 7034 thousand USD in 2015, and the lowest value of
662.02 thousand in 2020. With the area covered by built-up increasing, negative values
given by built-up areas have become higher. For 2005, it had a negative 15,030 USD,
negative 23,200 USD for 2010, negative 34,690 USD for 2015, and negative 58,970 USD
for 2020. The values for water bodies have also fluctuated. It was 178.63 thousand USD
for 2005. It decreased for both years afterward, with values 124.51 thousand USD for
2010 and a minimum of 94.23 thousand USD for 2015. However, its value rose again to
155.89 thousand USD for 2020.

Forest also has significantly higher values standing at 551.77 thousand USD for 2005,
578.08 thousand USD for 2010, had a slight decline in 2015 with a value of 526.62 thousand
USD, and had an increase to 571.02 thousand USD for 2020. Barren land had undergone
some serious decline over the recent years. While it increased from 143 thousand USD
(2005) to 154 thousand USD (2010), it has since declined to 39 thousand USD for 2015 and
remained at the same for 2020 as well. Agriculture, forest, and water bodies comprised the
highest, as compared to the other LC types, in 1990.

These fluctuations in class-based ecosystem service value also affected the total
ESV. It was highest for the year 2005 with 1417.18 thousand USD but had declined to
1370.85 thousand USD in 2010 and 1289.6 thousand USD in 2015. It had slightly risen to
1330.06 thousand USD in the year 2020.

4. Discussion and Conclusions

This study focused on deriving three major outcomes for the Rupandehi District.
Based on the Landsat satellite image, we obtained LC information for the years 2005, 2010,
2015, and 2020 through RF classification in GEE, calculated the CoG for each LC type and
analyzed the transfer along the years, and determined the change in ESV over the years.
A cloud-based computing platform (GEE) facilitated acquiring and analyzing data for
the study, including median composite and derivative indices from Landsat images and
topographic information from SRTM DEM. GEE has certainly overcome the tiring effort
to download each earth scene and offline analysis. This has reduced the time and cost,
increasing efficiency. The study produced satisfactory results in classifying the LC with
kappa statistics showing substantial agreement (>0.60) and accuracy in a good range (>0.70)
for all the years. We also evaluated the ESV values for individual land cover classes and
total values for each of the years, indicating the fluctuations. Lastly, at the end of the paper,
we also discuss the aspects and problems of the spatiotemporal analysis of developing
regions including the lack of sustainability in the developmental projects.

If we analyze the individual classes, agricultural land, which is the major percentage of
LC, has been subjected to various fluctuations. Built-up areas, which were mostly centered
in the two major cities, in the earlier years, have now become more spread out, inviting
the problems such as land fragmentation and unmanaged urbanization. It increased from
18.14 sq. km. in 2005 to 71.15 km in 2020 (292% increment). A heavy increase in built-up
areas can be seen progressing along the highway connecting major cities. Thus, the CoG
of a built-up area is located around the centroid of the two cities. The decrease in water
bodies from 2005 to 2015 can be explained by riverside encroachment and drying up of
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natural ponds due to extreme heat. However, artificial ponds for commercial fish farming
have increased over the past few years, which can explain the increase in area in 2020 in
a western direction. Forest area is subjected to less change in compared to other classes.
It may also be the undisturbed class as the shift in the CoG is also very low. Strict rules
against deforestation and the concept of community forest may be the reasons for the
increasing forest area. In 2015, significant changes can be seen with decreasing forest
and water bodies and increasing agriculture. The conversion of private green covers into
farmland may be a contributing factor for that. Barren land increased from 2005 to 2010
and then, subsequently, decreased in the following years. This may be explained by the
riverbank encroachment due to the human settlement. The barren lands in our study are
generally the shores of rivers and ponds. The patches are often thin and elongated along
with the water sources. Due to the limited spatial resolution of Landsat, the area of the
barren land was smaller than the individual pixel most of the time, resulting in either water
bodies or nearby major classes. Thus, it generated 0 values for the UA and the PA. The
year 2005 had the highest ESV value due to the large area of ecological land (agriculture,
water bodies, and forest). As the ESV values are directly proportional to the area of the
land cover, increasing the built-up area increased negative ESVs. Due to the fluctuations in
the area of other land cover classes, ESV values were also varied over the years.

We also compared our classification results of 2010 with a national LC map prepared
by Integrated Mountain Development (ICIMOD) [61]. ICIMOD had divided the land into
12 classes and used object-based classification, and obtained a little higher overall accuracy
compared to ours, of 85.13%, and a kappa of 0.82. Figure 8 shows the comparison of our
result with that of ICIMOD, alongside high-resolution imagery from GEP for 2010. The
comparison is performed by zooming in on Bhairahawa, the second-largest city in the
district. While the ICIMOD landcover helps to identify the runway in the airport, our
results just show certain signs of a built-up area. Both studies have identified agriculture
to a quite good extent. However, our classification showed better results in identifying
the water bodies and overall built-up areas, which is shown mostly as barren in the work
by ICIMOD. Due to the inclusion of broad classes, ICIMOD, thus, had the advantage of
identifying the peri-urban areas but had the limitation of misclassifying the major classes.
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For the year 2020, we compared our classified LC map with a global 10-meter resolu-
tion map of the Earth’s land surface produced by ESRI, alongside high-resolution imagery
from GEP for the same year. ESRI had produced the classification results with 10 classes
processing over 400,000 Earth observations. Figure 9 shows the comparison between them
focused at Butwal, the biggest city of the district. The classes were more generalized by
ESRI, giving the smoothness, but failed to quantify the minor classes such as water bodies.
It can be seen that water bodies were more accurately classified in our work compared to
ESRI’s LC. Similarly, the problem of the fragmentation of agricultural lands by haphazard
built-up areas was observed more clearly in our work.

Figure 9. Comparison of LC map around Butwal and its vicinity area for the year 2020 from top to
bottom: 30-meter map obtained from our study, high-resolution imagery on Google Earth Pro (GEP),
and global 10-meter map prepared by ESRI using Sentinel 2.

From the results of our study, we can discuss the following aspects of the spatiotem-
poral changes in developing regions:

a. Sustainability is something every developmental effort should focus on. However,
Nepal is often struggling to incorporate this into its strategies. District-level policies
also lag in that aspect. Providing the historical and present status of LC can help in
understanding how the land resources have been used over the years. The critical
information obtained can be of high importance for planning more sustainably.
It is highly recommended to incorporate ecological-based approaches to address
disturbances in the ecosystem in the short- and long-term regulations. It must be
ensured that the concepts of open spaces, green fuels, water conservation, forest
restoration, food production, and watershed management are given high importance
to curb the unplanned and haphazard development.

b. Along with knowing the status of LC, it is extremely crucial to monitor where the
particular LC class is focused. The analysis of the central displacement of LC can
help understand the development of the region and provide references for resource
management and territorial planning. The rapid shift of a particular LC in a direction
can be an alarm to the overexploitation of another resource. Therefore, the analysis
of LC along with the gravity shift of the classes is endorsed.

c. Calculating ESV is a definitive and appropriate approach for evaluating the ecosys-
tem on a monetary basis providing the scientific ground for commanding the policies.
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In addition, ESV can be an effective way of communicating the results. It can provide
insights into the load that we put on ecosystems and thus can help in implementing
proper plans and strategies by district administration offices and local governmental
bodies to stop the exploitation of resources. Integrating economic, ecological, and
social dimensions in spatial planning ensures sustainable urban development plans.

d. Accuracy is highly dependent on the quality of LC data and the unit value of ESV
for each LC class type. Therefore, the improvement in LC data is highly recom-
mended, along with more details and empirical studies for obtaining a unit value of
ecosystem services.

e. Studies such as ours are scientific efforts for developing regions, incorporating spatial
econometrics and statistics with earth observation studies and GIS. Often, the topics are
left out at the local level and are not considered in urban planning and development.

The study is the first of its kind in the Rupandehi District. The pattern and above
discussion would be helpful to concerned authorities and stakeholders. We hope the study
could be fruitful to the authorities interested in knowing the spatial changes of the land
cover and also to those working on maintaining sustainable ecosystem services. Besides
our effort to quantify the spatiotemporal analysis of the region, this study faced some
challenges and limitations, which are as follows:

i. Stakeholders may be interested in the extraction of small classes such as road net-
works, types of forest, grassland, or pasture, which this study did not try to achieve
due to the mid resolution of Landsat and the fragmented characteristics of the study
area. Additionally, it can only be possible with a high level of spatial data. However,
it may be difficult to acquire high-resolution images for long-term studies.

ii. Another problem is the class imbalance problem. While we had enough training,
data were labeled as agriculture due to the large area covered by farmland, but the
minority classes such as barren land and water bodies faced the problem of insuffi-
cient training data in comparison to the majority classes. However, we compensated
for the problem by manually adding the points for the minority classes.

iii. Obtaining a proper ESV is difficult to obtain in the context of Nepal. We used the
values derived from the Tibetan plateau, which shares a border with Nepal and
has a similar economic and development stage. The values have also been used by
previous researchers in the context of Nepal. However, there is certainly the need
for detailed and thoroughly established ESV coefficients applicable to the whole of
Nepal.

Future work can focus on resolving the limitations considering the new data, tech-
niques, and coefficients. Either classifying more LC classes on Landsat or applying data
fusion techniques with Sentinel imagery could be conducted to obtain finer and more
precise LC classes. The class imbalance problem can be addressed using resampling tech-
niques (either an under-sample majority class or an oversample minority class). Trying
a variety of algorithms can be beneficial with imbalanced datasets. Besides RF, ensemble
methods such as boosting, and bagging could be implemented to evaluate accuracy and
robustness. For improvement in regional-based ESV factors, local and federal level col-
laborative research is recommended along with the inclusion of questionnaires for local
ecologists and community-based surveys in the method.
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